CAPILLARY ELECTROPHORESIS OF GLYCANS
Biotechnology and biomedical applications

András Guttman

The Barnett Institute, Northeastern University, Boston, MA
and
Horváth Laboratory of Bioseparation Sciences, Debrecen, Hungary

MASSEP, Boson, MA, Dec 21, 2010
Significance of protein glycosylation

- There has been a rapid recent progress in glycomics research to understand the biological role of carbohydrate moieties of glycoproteins.
- Alterations in protein glycosylation with variable site occupancy or changes in oligosaccharide structures (microheterogeneity) can lead to biological activity changes.
- Glycosylation types: N-linked glycosylation (through the amide nitrogen of asparagine side chains) and O-linked glycosylation (through the hydroxy oxygen of serine and threonine side chains).
For N-linked oligosaccharides, a 14-sugar precursor is first added to the asparagine in the polypeptide chain of the target protein. The structure of this precursor is common to most eukaryotes, and contains 3 glucose, 9 mannose, and 2 N-acetylglucosamine molecules. A complex set of reactions attaches this branched chain to a carrier molecule (dolichol), and then it is transferred to the appropriate point on the polypeptide chain as it is translocated into the ER lumen.

Types of N-linked glycosylation:
- High-mannose type: contains just two N-acetylglucosamines with many mannose residues.
- Complex type: can contain almost any number of the other types of sugars, including more than the original two N-acetylglucosamines.
- Hybrid type: combination of the two above.
The increased size of N-glycans that occurs upon malignant transformation can be explained by an elevation in GlcNAc transferase-V (GNT-V) activity.
Malignant cells release glycoproteins carrying disease-related glycans into the interstitial space, where they can reach the circulation.

Glycan analysis options

Challenge: complex, diversified structures; no chromophore / fluorophore groups; mostly not charged

Advantages of CGE over other analytical methods

- **GC** requires derivatization resulting in stereoisomers and complex separation patterns.
- **HPLC**: - HPAE/PAD: limited separation efficiency, non-specific detector response
 - Normal phase and HILIC: time consuming, low efficiency,
 - UPLC: no current informatics solution
 - Graphitized carbon: excessive retention of sialylated structures
- **Structural characterization** – MS (limited information on anomeric configuration and other isoforms), NMR (high quantity and purity requirements).
- **PAGE** – slow, labor intensive and not quantitative.
- **CE** – fast, efficient, automated, very sensitive, small sample volume requirements, easy multiplexing, different modes of separation; however, requires charged UV/fluorophore tags to assure electromigration and UV/LIF detectability. Informatics database is being built.
High separation efficiency
Small sample volume (1-10 μl)
Fast separation (min - sec)
Predictable selectivity
Full automation
Quantification/good dynamic range
Reproducibility/robustness
Multi-capillary option (CAE)
Multi-spectral imaging
Coupling to mass spectrometer
SEPARATION MODES IN CAPILLARY ELECTROPHORESIS

- Capillary zone electrophoresis (CZE)
- Micellar electrokinetic chromatography (MEKC)
- Capillary gel electrophoresis (CGE)
- Capillary isoelectric focusing (CIEF)
- Capillary affinity electrophoresis (CAE)
- Capillary isotachophoresis (ITP)
- Capillary electrochromatography (CEC)

- Micropreparative applications
CGE: From the first oligonucleotide separation to sequencing the Human Genome

Separation of APTS labeled high-mannose type glycans released from bovine ribonuclease B

Inset: Structural representation of the high-mannose type N-linked oligosaccharides.
Migration time normalization for CAE operation

Sample preparation for CGE based N-linked glycan analysis

1. Release of N-linked glycan structures by Peptide N-glycosidase F (PNGaseF) digestion
2. Removal of the deglycosylated proteins
 - ice-cold ethanol precipitation/centrifugation
 - membrane filtration
3. Labeling of the released sugar structures by reductive amination using l-aminopyrene-3,6,8-trisulfonic acid (APTS)
Methods to Accelerate Enzyme Catalyzed N-deglycosylation of Glycoproteins

- Microwave assisted deglycosylation of N-linked glycans
- Immobilized PNGase F enzyme reactors in capillary columns
- Integrated microfluidic chip for rapid deglycosylation
- Pressure cycling technology (PCT)
PCT-enhanced enzyme reactions

- Kinetic advantage: pressure promotes water dissociation
- Many hydrolytic reactions are accelerated
- Substrate binding – pressure reversibly denatures substrate protein, revealing hindered cleavage sites
- PCT accelerates and improves reduction/alkylation
- Enzymes: Trypsin, Chymotrypsin, Pepsin, Lys-C, Glu-C, Asp-N, Proteinase K, PNGase F tested to date – all positive
- Both in-solution and in-gel digestion protocols benefit from PCT
Comparative CE Analysis of APTS Labeled Released Glycans from Polyclonal Human IgG Using PCT and Atmospheric N-deglycosylation with 1:2500 Enzyme:Substrate Molar Ratio.

A) APTS labeled maltooligosaccharide ladder
B) PCT: 30 kPsi, 5 min. 37°C
C) Atmospheric pressure, 3 hours, 37°C
D) Atmospheric pressure, 5 min, 37°C
IS2: maltose - APTS.

Z.Szabo, A.Guttman, B.L.Karger, Rapid release of N-linked glycans from glycoproteins by pressure cycling technology, Analytical Chemistry 82 (2010) 2588-2593.
Advantages of Pressure Cycling Technology (PCT) Assisted Enzymatic N-deglycosylation

- The high pressure facilitates conformation changes of the target glycoprotein, increasing the accessibility of the endoglycosidase to the cleavage sites.

- 1:2500 enzyme : substrate molar ratio at 30 kPsi and 37°C quantitatively released the asparagine linked glycans in minutes.

- Pressure cycling apparently did not lead to any loss of sialic acid residues.

- The microliter scale reaction volume alleviated possible precipitation related issues.

- PCT offers simultaneous processing of 12 samples.
Sugar labeling by APTS

Purpose:
Introduction of label and charge

- Reductive amination
- Sugar reducing ends only
- ex 488 nm / em 520 nm LIF, excellent sensitivity
- Simple, one step reaction
- Great efficiency (over 90%) under optimized conditions
 (reagent concentration, time, temperature, pH, solvent)
- Non-selective: uniform labeling for most structures
- Easy quantification: one fluorophore per sugar molecule
Derivatization yield and desialylation kinetics

Trisialylated triantennary \((2 \times \alpha 2,3) \) oligosaccharide, derivatization time: 2 hours at all temperatures.

Time Dependence of APTS Derivatization of 5 nmol Maltoheptaose

Solid line: 10x excess of APTS, 0.6 M citric acid catalyst
Dotted line: 100x excess of APTS, 7.5% acetic acid catalyst
Reaction temperature: 55°C

Sample purification options for excess APTS removal

1) Size exclusion chromatography using 96 well filter plate filled with 100 ul Sephadex G10 resin

2) G10 bead filled pipette tips
 - 200 ul pipette tips filled with 160 ul G10 resin
 - conditioning and elution with 50 % acetonitrile

3) Normal phase bead filled pipette tips
 - 1000 ul pipette tips filled with 10 ul DPA-6S normal phase polyamide resin
 - washing: 95% acetonitrile / 5% water
 - elution: 20% acetonitrile / 80% water
Sample purification results

Monosaccharide composition analysis by CE

1=AMAC (9-aminoacridone, eof marker)
2=Neu5Ac-AMAC; 3=GalNAc-APTS; 4=GlcNAc-APTS; 5=Man-APTS; 6=Glc-APTS; 7=Fuc-APTS; 8=Gal-APTS; 9=APTS

Flowchart of N-linked oligosaccharide sequencing

Purified Glycoprotein

PNGase F Digestion 2 hours

Free N-linked Oligosaccharides

Labeling with APTS 90 min at 55°C

Labeled Oligosaccharides

Exoglycosidase Matrix Digestion 16 hours

Sequencing Digests

Combine Digests 5 min

Capillary Gel Electrophoresis

Computerized Data Analysis 10 min

Oligosaccharide Sequence
Boronic acid – Lectin Affinity Chromatography (BLAC) enrichment of glycoproteins

Boronic acid
\[
\text{R} - \overset{\text{OH}}{\text{B}} - \overset{\text{OH}}{\text{O}}
\]

Lectin affinity
- Concavalin A
- Wheat Germ Agglutinin
- Jacalin
...

Miniaturization
Chromatographic pipette tip
Affinity resin
Handee spin column
Comparison of affinity micropartitioning using boronic acid (A), Con A (B) and BLAC/Con A (C) resin filled pipette tips.
Profiling of normal human serum glycans with (A) and without (B) BLAC/Con A affinity enrichment.
CGE profiling of human plasma samples

Without glucose removal

After glucose removal

Sample preparation and analysis of human serum glycoproteins by CE (glycan) and LC-MS (protein)
MAIN APPLICATIONS

- FOOD AND BEVERAGE INDUSTRY
- BIOTECHNOLOGY
- BIOPHARMACEUTICALS
- BIOMEDICAL
Capillary electrophoresis fingerprinting of oligosaccharides in beers

Ethanol from dry grind corn milling (current process)

- Starch in corn seed is enzymatically converted to sugar and fermented to ethanol
- Saccharification / Fermentation of Fiber would increase ethanol yields by 10%

(DDGS: distillers dried grains with solubles)
High throughput enzyme activity evaluation

Enzyme reaction monitoring: Celloooligomer standards
Cellohexaose substrate
9 different cellulases

The methylotrophic yeast *Pichia pastoris* is a preferred host for over-expression of recombinant proteins as it produces large quantities of properly folded proteins and capable of adding both N-linked and O-linked carbohydrate moieties to secreted proteins.

Phospholipase C (PLC) belongs to a class of enzymes that cleave phospholipids to produce diacylglycerol and a phosphorylated head group (e.g., inositol phosphate in the case of phosphoinositol-specific PLCs).

SDS-PAGE analysis of intact and deglycosylated PLC

After SDS-PAGE, the bands corresponding to recombinant PLC were in-gel digested with chymotrypsin.

The resulting peptides were loaded onto a 10 cm C_{18} RP 100 μm i.d. capillary column and eluted into a QTOF mass spectrometer by means of a 45 minute gradient.
Glycopeptide analysis from recombinant PLC by μLC-MS
CE separation of high mannose type oligosaccharides

48 cm capillary column, I.D.: 50μm; LIF detection: Ex: 488nm, Em: 520 nm. Buffer: 25 mM acetate, pH 5; temp: 25°C; Pressure injection: 10 sec at 0.5 psi.

Digested PLC

Undigested (control) RNAse B

Digested RNAse B
Characterization of mAb N-linked Glycans

- IgG1 contains N-linked glycan structures (1 conserved Asn site).
- Variability depending on expression conditions
- Structural diversity, e.g., presence of galactose, sialic acid, or fucose.
- Glycosylation pattern determines biological activity: physico-chemical properties, cell-mediated effector functions (complement binding, activation, etc).
- Understanding the microheterogeneity of glycosylation is very important in clone selection and manufacturing of therapeutic recombinant mAbs.
CE – MS verification of the separated components

CE-MS extracted ion electropherograms of APTS-labeled sialylated biantennary glycans (panel A) and the MS traces of the corresponding major peaks (panel B)

N-linked glycan profiling of pooled healthy and prostate cancer patient sera after BLAC partitioning
The power of CGE in N-linked glycan profiling

F1=tetrasialo-triantennary-2xα2,6; F2=tetrasialo-triantennary-2xα2,3; F3=trisialo-triantennary-2xα2,6; F4=trisialo-triantennary-2xα2,3; M5-M9: Mannose 5 - Mannose 9.

The future of CE and CE-MS based carbohydrate analysis
ACKNOWLEDGMENT

Barnett Institute, Boston, MA
• Barry L. Karger
• Zoltan Szabo
• Tomas Rejtar

University of Debrecen, Hungary
• Stefan Mittermayr
• Akos Szekreneyes
• Andras Kovacs
• Janos Kerekgyarto
• Csaba Varadi

NIBRT, Dublin, Ireland
• Pauline Rudd
• Jonathan Bones